教育(访问)经历:
2009.9-2015.6,兰州大学生态学专业,理学博士(硕博连读);
2005.9-2009.6,兰州大学地理信息系统专业,理学学士;
工作经历:
2015.7-2016.12,西北农林科技大学水土保持研究所,助理研究员;
2017.1-2020.9,西北农林科技大学水土保持研究所,副研究员;
2020.10至今,西北农林科技大学水土保持研究所,研究员。
区域气候变化,植被动态变化,植被生态模型,遥感与GIS应用
1.国家自然科学基金面上项目:“气候变化下黄土高原潜在植被群落时空演变研究”(2021-2024),主持
2.国家自然科学基金青年项目:“基于动态植被模型的延河流域潜在植被分布及生境适宜度研究”(2017-2019),主持
3.科技部重大专项:“青藏高原典型区耕地利用强度变化研究”(2019-2022),子课题主持
4.中国科学院西部之光“青年学者B类”项目:“黄土高原地区潜在自然植被的模拟研究”(2016-2018),主持
5.中国工程院院地合作项目:“黄河流域(宁南山区)水土保持与生态环境建设战略研究”(2020),课题主持
6.宁夏回族自治区重点研发计划项目:“宁夏黄土丘陵区小流域生态综合治理与高质量发展技术集成与示范”(2020-2023),子课题主持
7.教育部博士启动基金:“黄土高原地区潜在自然植被分布格局及其生产力的模拟研究”(2015-2018),主持
8.西北农林科技大学基本科研业务费专项:“陕西省典型森林生产力动态及对未来气候变化响应”(2017-2019),主持
9.陕西省水利厅:“陕西省水土保持本底调查与评估利用-陕西省高分辨率植被类型解译及地形因子计算” (2018),子课题主持
2.Ding YX, Peng SZ*. Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theoretical and Applied Climatology, 2021, https://doi.org/10.1007/s00704-021-03625-w (三区,2.882)
3.Ding YX, Li Z, Peng SZ*. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102179. (一区top,4.846)
4.Ding YX, Peng SZ*. Spatiotemporal trend and attribution of drought across China from 1901-2100. Sustainability, 2020, 12(2), 477. (SSCI二区,2.592)
5.Peng SZ, Ding YX, Liu WZ*, Li Z*. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11, 1931–1946. (一区top,10.951)
6.Ding YX, Liang SQ*, Peng SZ*. Climate change affects forest productivity in a typical climate transition region of China. Sustainability, 2019, 11(10), 2856. (SSCI二区,2.592)
7.Zhang C, Li J, Wang J, Liu GB, Wang GL, Guo L, Peng SZ*. Decreased temporary turnover of bacterial communities along soil depth gradient during a 35-year grazing exclusion period in a semiarid grassland. Geoderma, 2019, 351, 49–58. (一区top,4.336)
8.Peng SZ, Yu KL, Li Z, Wen ZM, Zhang C*. Integrating potential natural vegetation and habitat suitability into revegetation programs for sustainable ecosystems under future climate change. Agricultural and Forest Meteorology, 2019, 269-270: 270–284. (一区top,4.189)
9. Peng SZ, Li Z*. Incorporation of potential natural vegetation into revegetation programmes for sustainable land management. Land Degradation and Development, 2018, 29(10): 3503–3511. (一区top,4.275)
10. Peng SZ, Li Z*. Potential land use adjustment for future climate change adaptation in revegetated regions. Science of the Total Environment, 2018, 639, 476–484. (一区top,6.551)
11. Peng SZ, Gang CC, Cao Y, Chen YM*. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. International Journal of Climatology, 2018, 38, 2250–2264. (二区,3.601)
12.Peng SZ, Ding YX, Wen ZM, Chen YM*, Cao Y, Ren JY. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agricultural and Forest Meteorology, 2017, 233: 183–194. (一区top,4.189)
13.Peng SZ*, Zhao CY, Chen YM, Xu ZL. Simulating the productivity of a subalpine forest at high elevations under representative concentration pathway scenarios in the Qilian Mountains of northwest China. Scandinavian Journal of Forest Research, 2017, 32(2): 166–173. (三区,1.667)
14.Peng SZ, Zhao CY*, Xu ZL, Muhammad WA. Restoration and conservation potential of destroyed Qinghai spruce (Picea crassifolia) forests in the Qilian Mountains of northwest China. Mitigation and Adaptation Strategies for Global Change, 2016, 21(2): 153–165. (三区,2.651)
15.Peng SZ, Chen YM, Cao Y*. Simulating water-use efficiency of Picea crassifolia forest under representative concentration pathway scenarios in the Qilian Mountains of Northwest China. Forests, 2016, 7(7): 140. (二区,2.116)
16.Peng SZ, Zhao CY*, Xu ZL. Modeling stem volume growth of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains of Northwest China. Scandinavian Journal of Forest Research, 2015, 30(5): 449–457. (三区,1.667)
17.Peng SZ, Zhao CY*, Xu ZL. Modeling spatiotemporal patterns of understory light intensity using airborne laser scanner (LiDAR). ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 195–203. (一区top,6.942)
18.Peng SZ, Zhao CY*, Wang XP, Xu ZL, Liu XM, Hao H, Yang SF. Mapping daily temperature and precipitation in the Qilian Mountains of northwest China. Journal of Mountain Science, 2014, 11(4): 896–905. (四区,1.423)
19.Peng SZ, Zhao CY*, Zheng XL. Study on the relationship between human activities and spatial distribution changes of Tamarix in Ejina oasis. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2010, 895-898. (EI)
20. 师玉锋, 彭守璋*. 2018-2100年黄土高原地区干旱的时空变化. 兰州大学学报(自然科学版). 2020, 56(06), 785–792.
21.师玉锋, 梁思琦, 彭守璋*. 1901-2017年黄土高原地区气候干旱的时空变化. 水土保持通报, 2020, 40(1): 283–289.
22.任婧宇, 赵俊侠, 马红斌, 彭守璋*, 李炳垠. 未来时期黄土高原四季气候变化的时空分布特征. 水土保持通报, 2019, 39(5): 262–271.
23.梁思琦, 彭守璋, 陈云明*. 陕西省典型天然次生林和人工林生产力对气候变化的响应. 应用生态学报, 2019, 30(9): 2892–2902.
24.任婧宇, 彭守璋, 曹扬, 霍晓英, 陈云明*. 1901-2014年黄土高原区域气候变化时空分布特征. 自然资源学报, 2018, 33(4): 621–633.
25.霍晓英, 彭守璋, 任婧宇, 曹扬, 陈云明*. 陕西省油松林生产力动态及对未来气候变化的响应. 应用生态学报, 2018, 29(2): 412–420.
26.彭守璋, 赵传燕*, 许仲林, 王超, 柳逸月, 黑河上游祁连山区青海云杉生长状况及其潜在分布区的模拟. 植物生态学报, 2011, 35(6): 605–614.
27.彭守璋, 赵传燕*, 郑祥霖, 许仲林, 何磊, 祁连山青海云杉林生物量和碳储量空间分布特征. 应用生态学报, 2011, 22(7): 1689–1694.
28.彭守璋, 赵传燕*, 别强, 基于遥感的祖厉河流域土地分类及其分布空间分析. 遥感技术与应用, 2010, 25(3): 366–372.
29.彭守璋, 赵传燕*, 彭焕华, 郑祥霖, 许仲林, 黑河下游柽柳种群地上生物量及耗水量的空间分布. 应用生态学报, 2010, 21(8): 1940–1946.